skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vazquez, Antonio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many thermodynamic calculations and engineering applications require the temperature-dependent heat capacity (Cp) of a material to be known a priori. First-principle calculations of heat capacities can stand in place of experimental information, but these calculations are costly and expensive. Here, we report on our creation of a high-throughput supervised machine learning-based tool to predict temperature-dependent heat capacity. We demonstrate that material heat capacity can be correlated to a number of elemental and atomic properties. The machine learning method predicts heat capacity for thousands of compounds in seconds, suggesting facile implementation into integrated computational materials engineering (ICME) processes. In this context, we consider its use to replace Neumann-Kopp predictions as a high-throughput screening tool to help identify new materials as candidates for engineering processes. Also promising is the enhanced speed and performance compared to cation/anion contribution methods at elevated temperatures as well as the ability to improve future predictions as more data are made available. This machine learning method only requires formula inputs when calculating heat capacity and can be completely automated. This is an improvement to common best-practice methods such as cation/anion contributions or mixed-oxide approaches which are limited in application to specific materials and require case-by-case considerations. 
    more » « less